cvPSYmc
implements the real time bubble detection
procedure of Phillips, Shi and Yu (2015a,b)
cvPSYmc(obs, swindow0, IC = 0, adflag = 0, nrep = 199, multiplicity = TRUE, Tb, useParallel = TRUE, nCores)
obs | A positive integer. The number of observations. |
---|---|
swindow0 | A positive integer. Minimum window size (default = \(T (0.01 + 1.8/\sqrt{T})\), where \(T\) denotes the sample size) |
IC | An integer. 0 for fixed lag order (default), 1 for AIC and 2 for BIC (default = 0). |
adflag | An integer, lag order when IC=0; maximum number of lags when IC>0 (default = 0). |
nrep | A positive integer. Number of replications (default = 199). |
multiplicity | Logical. If |
Tb | A positive integer. The simulated sample size (swindow0+
controlling). Ignored if |
useParallel | Logical. If |
nCores | A positive integer. Optional. If |
A matrix. BSADF bootstrap critical value sequence at the 90, 95 and 99 percent level.
Phillips, P. C. B., Shi, S., & Yu, J. (2015a). Testing for multiple bubbles: Historical episodes of exuberance and collapse in the S&P 500. International Economic Review, 56(4), 1034--1078.
Phillips, P. C. B., Shi, S., & Yu, J. (2015b). Testing for multiple bubbles: Limit Theory for Real-Time Detectors. International Economic Review, 56(4), 1079--1134.
cv <- cvPSYmc(80, IC = 0, adflag = 1, Tb = 30, nrep = 99, nCores = 1)